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Our research efforts have addressed theoretical and numerical modeling of

sources emissions and transport processes of trace gases and aerosols emitted by biomass

burning on the central of Brazil and Amazon basin. For this effort we coupled an Eulerian

transport model with the mesoscale atmospheric model RAMS (Regional Atmospheric

Modeling System).

The development work can be described as follows:

(1) We tested the capability of RAMS to simulate the planetary boundary layer and

convective systems oll the Amazon basin during the dry season. Observed data from

RBLEI experiment, ECMWF and NCEP reanalysis were used as initial and boundary

conditions. Comparison between simulations using only ECMWF and NCEP data were

done and the results were compared with RBLE1 and AVHRR observations.

2) We improved a source emission parameterization of biomass burning emissions using

remote and local observations. Comparison with Earth Probe TOMS aerosol index

product, GOES-8 ASADA albedo from UW-Madison/CIMSS and with climatological
source emission for carbon monoxide had pointed out the usefulness of the sources

emissions parameterization.

3) The convective transport of trace gases by a mesoscale convective system (MCS) in

the Amazon basin is explicitly modeled through a numerical simulation with high spatial

resolution. The study is carried out using the atmospheric model RAMS (Regional

Atmospheric Modeling System). The model configuration was configured with 3 grids

with horizontal resolution of 50, 10 and 2.5 km. We used data from Trace_A Experiment

(1992) in order to compare the model results to the observed carbon monoxide in the high

troposphere transported by a MCS that took place in the Amazon basin (Sep. 26, 1992).

4) We introduced into RAMS a more complex cumulus scheme developed by Dr.

George Grell based on an approach of Arakawa and Schubert. This implementation still

has some work to be done, but preliminary results have shown several improvements in

terms of the location where convection is activated and the intensity of the vertical mass

flux. Some efforts will be put in order to couple a convective transport of tracers to this

scheme.
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Numerical simulation of planetary boundary layer and convective

systems

on Amazon basin during dry season

Numerical simulation of planetary boundary layer (PBL) development and deep and

moist convective systems on Amazon basin using the Regional Atmospheric Modeling

System (RAMS) is presented. The study was carried on for the period of TRACE-A

experiment. ECMWF and NCEP reanalysis were used to supply initial and boundary

conditions. Comparison of the reanalysis data with radiosondes showed that both models

have much more moisture in PBL and troposphere than observation, causing the model

RAMS simulate a PBL with stratocumulus that does not appears on observations and

convective systems on wrong space and time. Simulations of PBL development on forest

and savanna areas are showed using both reanalysis and are compared with RBLEI

observations. For simulation of a mesoscale convective system that took place over

Central Brazil on September 26, 1992, the effects of using different reanalysis assimilated

by RAMS with several time scales of nudging process are showed. The Fig. 1 shows

some thermodynamic profiles simulated and observed on forest. Figs. 2 and 3 show the

energy budget simulated with ECMWF data and compare with the observation of RBLEI

experiment.
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Regional numerical modeling of transport of biomass

burning emissions on South America

A study about the atmospheric transport of biomass burning emissions in the

Amazon and the Central of Brazil is presented. This study is carried out throught a

numerical simulation of the atmospheric motions using the atmospheric model RAMS

(Regional Atmospheric Modeling System). In this method the mass conservation

equation is resolved for CO2, CO and particulate material PM2.5. A model of gases and

particles sources emissions is introduced, associated with biomass burning in tropical

forest and savanna. The sources are spatially and temporally distributed and daily

assimilated, according to the biomass burning spots defined by remote sensing. The

advection, in a resolved scale, and turbulent transport, in a sub-grid scale, are resolved

using RAMS model parameterizations. A transport sub-grid parameterization, associated

to wet and deep circulation not explicitly resolved by the model, due its low spatial

resolution, is introduced. Sinks, associated with generic process of

removal/transformation of gases/particles, are parameterized and introduced in the mass

conservation equation. The methodology is applied to a case study on August and

September 1999. Comparison with Earth Probe TOMS aerosol index product, GOES-8

ASADA albedo from UW-Madison/CIMSS and with climatological source emission for

CO are made to point out the usefulness of sources emissions parameterization presented

here. The Figure 4 shows a comparison between the simulated distribuition of aerosol

PM2.5 with the TOMS aerosol index product on September 01, 1999.
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Explicitly Modeling the Vertical Transport of Biomass

Burning Emissions by a Mesoscale Convective System

on Amazon Basin

The convective transport of trace gases by a mesoscale convective system (MCS) on

Amazon basin is explicitly modeled through a numerical simulation with high spatial

resolution. The study is carried out using the atmospheric model RAMS (Regional

Atmospheric Modeling System). The model configuration was set tip with 3 grids with

horizontal resolution of 50, 10 and 2.5 kin. The resolution of the finer grid should permit

the model resolve the main eddies associated with deep convection activity, simulating

the transport of pollutants from planetary boundary layer (PBL) to high troposphere. The

case study is related to a MCS that took place o11 September 26, 1992 on Amazon basin,

where the PBL was polluted by biomass burning emissions on the previous days. The

atmospheric simulations were carried out using ECMWF reanalysis for initial and

boundary condition. The initial condition for carbon monoxide (CO) in PBL was defined

using profiles obtained by an instrumented aircraft of the TRACE-A experiment and the

remote-sensing product 'aerosol index' of TOMS. The simulated thermodynamic and CO

vertical profiles inside the MCS and at environment are presented, as well the role of

updrafts and downdrafts at the vertical transport of pollutants. Comparison between the

CO measured by aircraft at the MCS anvil and modeled is shown. Also are discussed the

main information resulting from high resolution experiments that might be helpful in

order to parameterize the convective transport at low spatial resolution models. Fig. 5

shows tracer and thermodynamic profiles inside of updfrat at simulations with resolution

of 2.5 km. Figs. 6 and 7 shows the same profiles that are 'resolved' at resolutions of 10

and 50 km.



New cumulus scheme based on Arakawa and Schubert's approach

The Fig. 8 shows a comparison between the traditional cumulus scheme of RAMS

based on Kuo's approach and the new one developed by Dr. George Grell. The two upper

pictures compare the simulated parameterized convective precipitation. With the Grell

scheme there is much more precipitation (and at different places) than that simulated by

Kuo scheme. The two lower pictures show the vertical velocity and the convective

heating rate for both schemes. The high resolution simulations indicate the Grell scheme

is more realistic than the Kuo scheme.
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Grid 2 - resoluLion 10 x 10 km
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Grid 1 resoluLion 50 x 50 km
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Accumul. convec, precipitation
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Eq-

2S"

4s!

6S

88

108

12S

14S

r / •

_'",

(mm)

Kuo scheme
EQ

2S

4S

6S

8S

IOS

IBS

14S

16000"

14000-

12000-

I0000-

8000-

8000-

4000"

2000

Vertical velocity. .
Grell X Kuo scheme {red)

0 0.03 0.08 0.09 0.12 0.15 0.18 0.21 0.24

m/s

18000-

14000-

12000

I0000

8000

6000

4000

2000.

Convective heating rate
Grell X Kuo scheme (red)

-io-20 o 2'o 4'o _b 8b 16o
K/day


